Weighted sparse recovery with expanders
نویسنده
چکیده
We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show that, using such sparse matrices, weighted sparse recovery with weighted l1 minimization leads to sample complexities that are linear in the weighted sparsity of the signal and these sampling rates can be smaller than those of standard sparse recovery. Moreover, these results reduce to known results in standard sparse recovery and sparse recovery with prior information and the results are supported by numerical experiments.
منابع مشابه
Model-based Sketching and Recovery with Expanders
Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper considers the same problem with the added twist that the sparse coefficients of the unknown vector exhibit further correlations as determined by a k...
متن کاملConvex Block-sparse Linear Regression with Expanders - Provably
Sparse matrices are favorable objects in machine learning and optimization. When such matrices are used, in place of dense ones, the overall complexity requirements in optimization can be significantly reduced in practice, both in terms of space and run-time. Prompted by this observation, we study a convex optimization scheme for block-sparse recovery from linear measurements. To obtain linear ...
متن کاملLecture 7 : Expanders
In this lecture we give basic background about expander graphs. Expanders are graphs with strong connectivity properties: every two large subsets of vertices in an expander have many edges connecting them. Surprisingly, one can construct very sparse graphs that are expanders, and this is what makes them so useful. Expanders have a huge number of applications in theoretical computer science: in ...
متن کاملRecovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information
In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...
متن کاملSparse Recovery of Positive Signals with Minimal Expansion
We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.01067 شماره
صفحات -
تاریخ انتشار 2016